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Fig. 3. Maximum sidelobe level of synthesized Taylor  patterns. Solid w e :  designed 
sidelok level = -25 dB. Dashed curve: designed sidelobe level = -30 dB. 

when u 5 1.3 or 4 <40”, beyond  which  high  sidelobes appear.  This is per- 
haps  to be expected because a concentric-ring  array  has  the  characteristics 
of both broadside and endfire  arrays and  grating lobes will appear in the 
case  of  cophasal  endfire  arrays  when  element  spacings  are  greater  than  a 
half-wavelength.  In  any  case, it is clear that multiple-ring  arrays  with 
sampled  amplitudes  approximate  the  patterns  obtainable  from  circular 
aperture  distributions  closely  when  the  inter-ring  spacings  are  small. 
Since  in  practice  one  does  not wish to use more  rings or more  elements 
than  necessary, it is interesting to examine  the effect  of inter-ring  spacing 
on  the  maximum  sidelobe level. 

The  maxidurn sidelobe level obtained by a concentric-ring  array  with 
an outermost  radius  of 4 A: has been computed as a  function  of  the  spacing 
between  adjacent  rings.  Taylor  distributions  for ii=4 were used for  two 
designed  sidelobe  levels;  namely, - 25 dB  and - 30 dB. The result is shown 
as the  two  curves in Fig. 3. It is seen that inter-ring  spacing  has  no signifi- 
cant effect on sidelobe level, but  that  a  drastic rise in the  maximum  sidelobe 
level appears in both c a s  when the  spacing  increases  beyond  a  half- 
wavelength.  We,  therefore,  conclude that  the  radiation  pattern  of  a 
circular  aperture  antenna  can be closely approximated by a  concentric- 
ring  array  with  sampled  amplitudes if the  inter-ring  spacing is  less than 
about 0.4 i. 
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On Detecting Total and Partial Symmetry 
of Switching Functions 

Abstract-A method is presented  for’  identifying  tdtal  or  partial 
symmetry  of  switching  functions based on the  application  of  the  prin- 
ciple  of  residue  test.  The  invariance  of  a  switching  function  under  a 
single interchange  of t w o  variables  can  be  readily  detected from  the 
equality  of some of  the residues of expansions about  these two vari- 
ables. This procedure of detecting  invariance is directly  applied  for 
the  identification  of  total or partial  symmetry  of  a  switching  function 
whose  variables  of  symmetry  are  either  all  unprimed.  all  primed,  or 
of  mixed  nature. 

INTRODUCTION 
A switching  function of n variables, which are  either all unprimed, all 

primed,  or mixed, is said to possess  total  symmetry in these  variables if 
any  permutation  of  the  variables  leaves  the  function  invariant [ l  1. A 
switching  function  which  remains  invariant  under  any  permutation  of  the 
variables,  either all unprimed, all primed, or mixed,  belonging to  a subset 
of the set of n variables is said to exhibit  partial  symmetry in these  variables 
of  the  subset.  Methods  for  detecting  symmetries  of  switching  functions 
have  been  suggested by several authors [2]-[8]. In this letter, based on  the 
application of the  principle of residue  test by numerical  methods [9], we 
suggest  a  method that detects all types  of  symmetries  corresponding to  a 
switching  function. The invariance of a  switching  function  under  a  single 
interchange  of  two  variables is readily  detectable  from  the  equality  of  the 
definite  groups  of  residues of expansion about these  two  variables. To 
detect  total  symmetry,  a  comparison of the  residues  associated  with  only n 
expansions is necessary, which also gives all the  alternative  forms of repre- 
sentations  of  symmetries  with  the  corresponding a numbers.  The  partial 
symmetry of a  switching  function  along  with all the  alternative  represen- 
tations  of  symmetries is also  similarly  detected. 

INVARIANCE OF A FUNCTION UNDER SINGLE 
PERMUTATION OF Two VARUBLES 

Let F be a  switching  function of n variables (xl, x2,. . . , x”). Expanding 
F about  any two of these n variables,  say x i  and x j .  F can be written  as 

F = X i X j f 0  + PiXjf1 + X i P j f 2  + X i X j f 3  (1) 

where fo, fl, f2, and f3 represent  residual  functions of expansion of (n - 2) 
variables,  not  including x i  and x j .  From (1) we see that  the function F.re- 
mains  invariant  under  single  permutation of the  two  variables x i  and x i ,  if 
1) fl = f2, when both x i  and x j  are unprimed; 2) fo=f3, when both x i  
and x j  are  primed; 3)f0=f, =f2=f3 ,  when either x i  is primed  and x j  is 
unprimed or vice versa.  Thus in order  to detect  invariance of a  function 
under  a  single  interchange of two  variables,  where  the  variables  are  either 
both  unprimed,  both  primed, or mixed, we need only  expand  the  function 
about these  two  variables and  compare their  different  residues of expansion 
for  equality. 

In  order  to evaluate  directly  the  residues of expansion about any  vari- 
able  for  a  function  expressed  in  decimal  mode,  consider  a  binary  number 
111101, of which the  decimal  equivalent is 61. Suppose we want  to  know 
whether  the  third  digit  from  the left  in this  binary  number is a 0 or 1, with- 
out  actually  writing  the  same,  but  from  a  knowledge ofits decimal  counter- 
part  only. Put  a binary  point in 111101 after  the  third  digit  from  the left, 
i.e., to  the right of the  digit  whose  identity is to be disclosed. We get 11  1.101 
whose  decimal  equivalent is 73. Thus by putting  the  binary  point  at  the 
aforementioned  position we have  actually  divided  the  original  binary 
number by 23, or its  equivalent  decimal  value 61 by 8. Now  discard all the 
binary  digits to  the right of the  binary  point. We obtain 111, which is 
equivalent to the  decimal  number 7, an  integer which can be obtained  in- 
dependently  from  the  number 74 by discarding  the  fractional  part $. The 
integral part 7 of the  decimal  quotient 73  is an  odd number,  which  implies 
that  the  right-hand  digit of its  binary  equivalent 111 is 1. If the  whole 
number  part  had been  even,  the  digit at the  extreme  right  would  have been 
0 191. 
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E x a m p l e :   F ( x , .  x2.  xj. .x,)=x(4. 6.8. 12) 
To apply the residue test to  the x2 variable we see that in the binary 

number  representation of the function. the  binary  point  should be shifted 
two digit positions  to  the left, which requires  that  its decimal counterpart 
be divided by 4.  Thus dividing by 4, the results obtained for different terms 
of the function are  4/4= 1, odd ; 6 4 = 1 + , odd ; 8/4 = 2, even ; 12,/4 = 3, odd. 
Hence the residues can be written by grouping  the decimal numbers  as 
F=x,(4, 6,  12)+8,(8).  Consider now the decimal numbers 12 and 8. We 
note  that x, and X, can be factored out from the  binary  representations of 
12 and 8, respectively, resulting in x2(1-00)  and  R2(1-00), which shows that 
the x, and E, residues are  identical.  This  equality can be shown directly, 
if we replace 0 in the x2 position of the  binary  representation lo00 of 8 by 1 
and  then  expand it about x2. This replacement of 0 by 1 in the x, position 
of lo00 is simply equivalent to  adding 2’ to the binary number  lo00  or 4 
to  its decimal equivalent. So in the  above  expansion, by adding 4 to 8, we 
get i,(12) in place of X2(8), which gives an easy way of identifying whether 
the X2 residue is equal  to,  contains, or is contained in the x, residue. 

Consider  expansion of F as given in (1  ). We see that when f ,  = f 2 ,  then 
not only F is invariant for x i -  x j  ( -  means “permuted  with”),  but also all 
the  functions derived from F by applying ( r 1 - 2 ) ! 2 ” - ~  transformations 
(negation  and  permutation  operations)  to  the  remaining ( n  - 2) variables 
are  invariant. The same is the case for Xi  - E, when fo = f,. Also, when fl 
=f,, we see that  the function derived from F by priming both x i  and x j  
remains  invariant when Pi-Xj. and  this  invariance is again unaffected 
by the application of any  transformation  to  the set of ( n - 2 )  residual 
variables. Similarly, when f o  = f,, the function  obtained from F by priming 
either xi or xj remains  invariant when R, - x j  or  xi - i j ,  and this invariance 
is again unaffected by applying  any  transformation  to  the set of ( n - 2 )  
residual variables [ 5 ] ,  [8]. 

DETECTION OF TOTAL S m m ~  
In  detecting  total symmetry of switching functions by the  application 

of the aforementioned  concepts, the following theorem is important. 
TheoremJ;AswitchingfunctionFofnvariables(x,,x,,x,;~~,x,_,,x,) 

is totally symmetric if it is invariant  under  only n permutations x ,  -x2 ,  
x2-x , .” ’ ,x ,~ , -x , .x , -x1 .  

The aggregate of n expansions  about  the pairs of variables (x,, x,), 
(x,, x,), ’ ’ ’ , ( x n -  ,. x”), (xn, x, )  is called the set of cyclic expansions. As 
illustration,  consider  the following example. 

Example: F ( x , ,  x2, x,, x,)=x (0. 1. 3.4. 6 ,  7, 8, 10, 1 1 ,  14) 

Expanding F cyclically and checking the residues of expansion for 
equality, we detect invariance  under  the following permutation  and nega- 
tion operations: 1 )  x1-x2.  2) 3,-R,. 3) x2-R3, 4) Xz-x3, 5) x,-X,, 
6 )  X, - x,, 7) x, - x,. 8) X, - Z1. Combining now 2), 4), 5), and 8), we have 
F(E,. E,. x,. X,) = E, - X2. X2 - x,, x, - X,, E, - X,, where the sign = denotes 
invariance  under  transformation. So F is totally symmetric, and  the vari- 
ables of symmetry are (X1. X,. x,, X,). The a numbers of the function can be 
found by writing the  function in the truth  table form and  double negating 
the  columns  under x,. x,. and x,. Thus F can be written as S2,,(Rl, X,, x,. 
X4). Similarly, combining  l), 3), 6), and 7), F can also be identified as 
SI,’(xl. x,. .Y,, x4). To find the variables of symmetry, we consider  any 
literal, preferably one with the lowest value of the subscript i, both primed 
and  unprimed in the set of cyclic permutations.  and  then  associate it with 
literals with which it is connected by - signs. We continue in this way until 
ending  on  the  literal with which we started.  The  literals  that occur in any 
closed path give a set of variables of symmetry. 

DETECTION OF PARTIAL S m m y  
In  order  to  detect  partial symmetry of a switching function, we are  to 

search for  the  invariance of the  function  under every interchange of the 
variables belonging to  a subset of the set  of n variables. The chain of cyclic 
permutations  has to be complete with these variables of the subset, the 
variables being either all unprimed, all primed, or of mixed type. In this 
case, depending  on  the  nature of the  problem,  a  complete set of expansions 
a b u t  possible variable  pairs  may be necessary. Consider  the following 
example  as  illustration. 

Example: FIY,, x,. x,.x,)=x(O. 1, 3.4. 6. 7,9. 10. 12. 15)  

Expanding F about different variable pairs. we detect  invariance  under 
the following permutation  and  negation  operations: 1 )  E, -x3 ,  2) x2 - X 3 ,  
3) X, - x,, 4) x j  - 2,, 5 )  x4 -x,, 6 )  X,- E2. From this set  of expansions we 
see that  a closed chain of cyclic permutations comprises the variables 
(x2, f,, x4)  and (f,, x3, X,) so that  the  function is partially symmetric with 
respect to these variables. By writing the function in the truth  table form 
and  double  negating  appropriate columns, the function can be written as 
~ l S , ~ x 2 , ~ 3 , x 4 ~ + X 1 S 1 ~ x ~ , X 3 r x 4 ) + ( ~ ~ 1 + R 1 ) S 2 ~ x 2 , R 3 r x 4 ~ , o r X 1 S 2 ~ X 2 r x 3 , X 4 J  
+x1S3(X2, x,, X4)+(x1+Rl)S1(EZ, x3, 2,). The function is also partially 
symmetric with respect to the subsets of variables of the sets (x,, X,, x,) 
and (X,. x3, X,). 
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On  the  Validity of the  Gradual-Channel  Approximation 
for Field-Effect  Transistors 

_ I  

Abstract-The  valid  range  of the gradual-channel  approximation 
is found  in  terms  of  the  width  of  the  conductive  channel.  Limitations 
of the  approximation  for  the  description  of  field-effect devices are 
clarified by considering the  external  characteristics and the  internal 
conduction  mechanism  separately. 

The most widely accepted method  of analysis for field-effect devices 
is the  gradual-channel  approximation first introduced by Shockley.’ 
Although  the  approximation has the inherent  shortcoming  that it cannot 
explain the  internal  current  conduction mechanism beyond pinchoff, the 
external drain  characteristics predicted by it have been found to agree 
reasonably well with the experimental observation for long devices.’ 

In  this letter. a  qualitative  estimate for the valid range of the  approxi- 
mation is found in terms of the conductive  channel width with the length- 
to-width  ratio  and  the  drain  current  as  two  parameters. Useful device 
design information can be obtained by this relatively simple method.  From 
this estimate, furthermore,  one  can find the  reason why the  approximation 
gives reasonable external characteristics despite its inability to explain the 
internal  operation mechanism. 

From  the  assumptions of 1) the  one-dimensional  character of the elec- 
tric fields in the space-charge region and in the  conductive  channel,  and 2) 
the  complete  depletion of free carriers  in  the space-charge region and the 
neutrality of the  conductive  channel,  the  gradual-channel  approximation 
gives the following results for the  potential inside the  conductive channel 
and  the  drain  current of an  n-channel device. 
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